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Abstract 

 

In order to reduce the security risk of a commercial aircraft, passengers are not allowed 

to take certain items in their carry-on baggage. For this reason, human operators are 

trained to detect prohibited items using a manually controlled baggage screening 

process. The inspection process, however, is highly complex as hazardous items are 

very difficult to detect when placed in close packed bags, superimposed by other 

objects, and/or rotated showing an unrecognizable profile. In this paper, we review 

certain advances achieved by our research group in this field. Our methodology is based 

on multiple view analysis, because it can be a powerful tool for examining complex 

objects in cases in which uncertainty can lead to misinterpretation. In our approach, 

multiple views (taken from fixed points of view, or using an active vision approach in 

which the best views are automated selected) are analyzed in the detection of regular 

objects. In order to illustrate the effectiveness of the proposed method, experimental 

results on recognizing guns, razor blades, pins, clips and springs in baggage inspection 

are presented achieving around 90% accuracy. We believe that it would be possible to 

design an automated aid in a target detection task using the proposed algorithm. 

 

1.  Introduction 
 

The ability to automatically and robustly recognize objects can be critical for many 

applications such as surveillance, video forensics, X-ray testing and medical image 

analysis for computer-aided diagnosis, to mention just a few. Our paper is dedicated to 

automated X-ray object recognition in baggage screening. As X-ray images are taken 

under controlled conditions, X-ray object recognition may be considered as an “easy to 

solve” problem in comparison with other computer vision problems related to the real 

world under uncontrolled conditions (e.g. people detection
(1)

 or scene recognition
(2)

), 

however, this is not the case of baggage screening, where computer vision techniques 

are still not effective enough to be used without human interaction
(3)

. 
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In this paper, we review certain advances achieved by our research group in this field 

based on computer vision and machine learning techniques in order to deal with the 

problem of object recognition. Our methods analyse multiple X-ray views, because it 

can be a powerful tool for examining complex objects in cases in which uncertainty can 

lead to misinterpretation. In our approach, multiple views (taken from fixed points of 

view, or using an active vision approach in which the best views are automated 

selected) are analyzed in the detection of regular objects. 

The rest of the paper is organized as follows: Section 2 shows a literature overview on 

baggage screening; Section 3 presents the approaches that our group has been developed 

in this field; and Section 4 gives some concluding remarks. 

 

2.  State of the Art 
 

Since the September 11 attacks, automated (or semi-automated) 3D recognition using 

X-ray images has become a very important element in baggage screening. The 

inspection process, however, is complex, basically because threatening items are very 

difficult to detect when placed in close-packed bags, superimposed by other objects, 

and/or rotated  showing an unrecognizable view
(4)

. In baggage screening, where human 

security plays an important role and inspection complexity is very high, human 

inspectors are still used. Nevertheless, during peak hours in airports, human screeners 

have only a few seconds to decide whether a bag contains or not a prohibited item, and 

detection performance is only about 80-90%
(5)

. Before 9/11, the X-ray analysis of 

luggage mainly focused on capturing the images of their content: the reader can find in 

(Murphy, 1989)
(6) 

an interesting analysis of several aircraft attacks around the world, 

and the existing technologies to detect terrorist threats based on Thermal-Neutron 

Activation (TNA), Fast-Neutron Activation (FNA) and dual energy X-rays (used in 

medicine since the early 70s). In the 90s, Explosive Detection Systems (EDS) were 

developed based on X-ray imaging
(7)

, and computed tomography through elastic scatter 

X-ray (comparing the structure of irradiated material, against stored reference spectra 

for explosives and drugs)
(8)

. All these works were concentrated on image acquisition 

and simple image processing; however, they lacked advanced image analysis to improve 

detection performance. Nevertheless, the 9/11 attacks increased the security measures 

taken at airports, which in turn stimulated the interest of the scientific community in the 

research of areas related to security using advanced computational techniques. Over the 

last decade, the main contributions were: analysis of human inspection
(3)

, pseudo-

coloring of X-ray images
(9, 10)

, enhancement and segmentation of X-ray images
(11)

 and 

detection of threatening items in X-ray images, based on texture features (detecting a 

9mm Colt Beretta automatic (machine) pistol)
(12)

, neural networks and fuzzy rules 

(yielding about 80% of performance)
(13)

, SVM classifier (detecting guns in real time)
(14)

, 

and dual energy
(15)

 in single views: using image processing techniques
(16, 17, 18, 19)

 and 

computer vision approaches
(20, 21, 22, 23)

. 

Even though several scientific communities are exploring a range of research directions, 

adopting very different principles, and developing a wide variety of algorithms for very 

different applications, automated X-ray object recognition remains an open question due 

to: i) the large variability of the appearance and shape of the test objects -both between 

and within categories-; ii) the large variability in terms of object sample depending on 

its points of view; and iii) the appearance of a test object can vary due to the conditions 

of self-occlusion, noise and acquisition. 
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In baggage screening, the use of multiple view information yields a significant 

improvement in performance as certain items are difficult to recognize using only one 

viewpoint. As reported in a study that measures the human performance in baggage 

screening
(24)

, (human) multiple view X-ray inspection leads to a higher detection 

performance of prohibited items under difficult conditions, however, there are no 

significant differences between the detection performance (single vs. multiple view) for 

difficult-easy multiple view conditions, i.e. two difficult or two easy views are 

redundant. We observed that for intricate conditions, multiple views X-ray inspection is 

required. 

Recently, some algorithms based on multiple X-ray views were reported in the 

literature. For example: synthesis of new X-ray images obtained from Kinetic Depth 

Effect X-ray (KDEX) images based on SIFT features in order to increase detection 

performance 
(25)

; and an approach for object detection in multi-view dual-energy X-ray 

with promising preliminary results
(26)

. 

In the literature review, we observed that there are few papers on 3D recognition with 

multiple X-ray views. This paper wishes to contribute to this field. 

 

3. Methods based on multiple views  
 

It is well known that an image says more than thousand words, however, this is not 

always true if we have an intricate image. In certain X-ray applications, e.g. baggage 

inspection, there are usually intricate X-ray images due to overlapping parts inside the 

test object, where each pixel corresponds to the attenuation of multiple parts
(15)

. 

In some cases, active vision can be used in order to adequate the viewpoint of the test 

object to obtain more suitable X-ray images to analyze. Therefore, an algorithm is 

designed for guiding the manipulator of the X-ray imaging system to poses where the 

detection performance should be higher
(27)

. 

In other cases, multiple view analysis can be a powerful option for examining complex 

objects where uncertainty can lead to misinterpretation. Multiple view analysis offers 

advantages not only in 3D interpretation. Two or more images of the same object taken 

from different points of view can be used to confirm and improve the diagnosis 

undertaken by analyzing only one image. Multiple view analysis in X-ray testing can be 

used to achieve two main goals: i) analysis of 2D corresponding features across the 

multiple views, and ii) analysis of 3D features obtained from a 3D reconstruction 

approach. In both cases, the attempt is made to gain relevant information about the test 

object. For instance, in order to validate a single view detection -filtering out false 

alarms- 2D corresponding features can be analyzed
(28)

. On the other hand, if the 

geometric dimension of a inner part must be measured a 3D reconstruction needs to be 

performed
(29)

. 

In this Section, we summarize advances achieved by our research group on automated 

object recognition in baggage screening based on computer vision and machine learning 

techniques. The images tested in our experiments come from public GDXray 

database
(15)

. 

 

3.1 Detection by tracking monocular detections 

 

In this Section we summarize the multiple view approach
(30, 31)

, using ad-hoc single 

view detectors for regular objects. The proposed method follows two main steps: 
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“geometric model estimation”, to obtain a geometric model of the multiple views, and 

“parts detection”, to detect the object parts of interest. 

 Geometric model estimation: Our strategy deals with detections in multiple views. In 

this problem of data association, the aim is to find the correct correspondence among 

different views. For this reason, we use multiple view geometric constraints to reduce 

the number of matching candidates between monocular detections. In our approach, the 

geometric constraints are established from bifocal (epipolar) and trifocal geometry
(32)

. 

Thus, for a detection in one view it is possible to estimate where its corresponding 

detection in another view should be. For this end, bifocal tensors (or fundamental 

matrix) and trifocal tensors are estimated from projection matrices, which can be 

computed by minimizing the error between real and modeled projection 3D  2D using 

calibration
(32, 33)

 or bundle adjustment
(34, 30)

 approaches. 

 Parts detection: In this section we give details of the algorithm that detects the object 

parts of interest. The algorithm consists of following two main steps: “identification” 

and “tracking”. The strategy is to ensure the detection of the existing parts of interest in 

first step, allowing the inclusion of false alarms. The discrimination between both is 

achieved in second step using multiple view analysis, where the attempt is made to track 

the potential parts of interest along the image sequence. 

In the identification, potential parts of interest are segmented and classified in each 

image of the sequence. It is an ad-hoc single view detector that depends on the 

application. Five segmentation approaches were tested in our experiments: i) Maximally 

Stable Extremal Regions (MSER) detects thresholded regions of the image which 

remain relatively constant by varying the threshold in a range
(35)

; ii) Spots detector 

segments regions by thresholding the difference between original and median filtered 

image
(36)

; iii) SIFT matching detects regions of the image which SIFT descriptors are 

similar to SIFT descriptors of reference objects
(37)

; iv) Crossing line profile (CLP) 

detects closed and connected regions from edge image that meet contrast criteria
(38)

; v) 

Sliding windows classifies a detection window that is passed over an input image in 

both horizontal and vertical directions using a pattern recognition approach
(39)

. 

An existing part of interest can be successfully tracked in the image sequence because 

its appearance in the images is similar and their projections are located in the positions 

dictated by geometric conditions. In contrast, false alarms can be successfully 

eliminated in this manner, since they do not appear in the predicted places on the 

following images and, thus, cannot be tracked. The tracking in the image sequence is 

performed using algebraic multi-focal constraints: bifocal (epipolar) and trifocal 

constraints among others obtained from our geometric model estimated in previous step. 

An example on detection of guns using our approach is illustrated in Figure 1, where a 

classifier was trained to detect triggers. In order to demonstrate the effectiveness of the 

proposed method , several applications -like detection of pen tips, razor blades, pins and 

guns in pencil cases or bags- were tested yielding promising results: precision and recall 

were 93% in 34 sequences from 4 to 8 views. 

The reader is referred to (Mery, 2011)
(30) 

and (Mery et al., 2013)
(31) 

for a detailed 

description of the tracking algorithm and more examples. 
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Figure 1. Detection of a gun in a bag. Top: single view detection of a gun, we 

observe that there are several false alarms. Middle: sequence with 4 X-ray images. 

Bottom: with multiple view analysis false alarms are eliminated without 

discrimination of the gun.  
 

3.2 Active X-ray vision 

 

We developed an active X-ray testing framework that is able to adequate the viewpoint 

of the target object in order to obtain better X-ray images to analyze. The key idea of 

our method is to adapt automatically the viewpoint of the X-ray images in order to 

project the target object in poses where the detection performance should be higher. 

Thus, the detection inside of complex objects can be performed in a more effective way. 

The general framework attempts to find a “good view” of the inspection object, i.e., an 

image in which a target object should be viewed from a good pose that ensures its 

detection. The good poses of the target object correspond to those ones from them the 

acquired view should have a high probability of detection. For instance, the good poses 

of a razor blade correspond to the frontal views. Thus, the key idea is to rotate and/or 

translate the inspection object from an initial position to a new one in which the 

detection probability of the target object should be higher. Clearly, if the initial position 

corresponds to a “good view”, no more positions will be required, in these cases the 

inspection is performed with only one X-ray image. 

An example of detection a razor blade using active vision is shown in Figure 2. In first 

view (left column) no blade was detected, for this reason a new point of view is 

generated. In second view (middle column), a razor blade was detected, however, the 

estimated pose does not correspond to a “good view”. Thus, a new view (right column) 
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was obtained to corroborate the detection. We can see the ability of our approach to find 

the target object looking for good views even with partial occlusions. 

 

 
Figure 2. Detection of a razor blade in pencil case using active vision. 

 

We evaluated two approaches that are able to detect the target object in a single view: i) 

SIFT matching detects regions of the image which SIFT descriptors are similar to SIFT 

descriptors of reference objects
(37)

; and ii) Implicit Shape Model (ISM)
(40) 

uses a visual 

vocabulary that is built by clusters of local features and their spatial probability 

distribution, which has been demonstrated to yield good recognition results for rigid 

objects.  Figure 3 shows the detection of a shuriken (commonly known as ninja star) 

using ISM. 

 

 
Figure 3. Detection of a shuriken using ISM approach in a single view (see red 

parallelogram). 
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Using a robotic arm and a semi-automatic manipulator system, the robustness and 

reliability of the method have been verified in the automated detection of razor blades 

located inside of nine different objects showing promising preliminary results: in 130 

experiments we were able to detect 115 times the razor blade with 10 false alarms, 

achieving recall of 89% and precision of 92%. 

The reader is referred to (Riffo and Mery, 2012)
(27) 

for a detailed description of the 

active vision algorithm and more examples. 

 

3.3 Recognition using an efficient search algorithm 
 

Recently, we developed a new method based on multiple X-ray views to recognize 

certain regular objects with highly defined shapes and sizes. The method consists of two 

stages: “monocular analysis”, to obtain possible detections in each view of a sequence, 

and “multiple view analysis”, to recognize the objects of interest using matchings in all 

views. 

 Monocular detection: We learn a classifier h to recognize patches or keypoints of the 

parts that we are attempting to detect. Images are taken of representative objects of each 

class from different points of view. In order to model the details of the objects from 

different poses, several keypoints per image are detected, and for each keypoint a 

descriptor y is extracted using, for example, LBP, SIFT and SURF, among others
(41)

. In 

this supervised approach, each descriptor y is manually labeled according to its 

corresponding class c. Given the training data (yt,ct), for t = 1, ... , N, where N is the total 

number of descriptors extracted in all training images, a classifier h is designed which 

maps yt to their classification label ct, thus, h(yt)  should be ct In monocular testing 

images (see for example Figure 4a) keypoints are extracted and classified using h. 

Classified keypoints are clustered using Mean Shift algorithm
(42)

. Only those clusters 

that have a large enough number of keypoints are selected. They will be called detected 

monocular keypoints as illustrated in Figure 4b. 

 Multiple view analysis: Multiple view analysis performs the recognition of objects of 

interest in three steps: i) Data association: In this step, we find matchings for all 

detected monocular keypoints in all consecutive images of the sequence. For each 

detected monocular keypoint, we efficiently seek in a dense grid of points the potential 

matching candidates using a lookup table that is computed off-line
(43)

 as shown in 

Figure 4c. ii) 3D analysis:  From each pair of matched keypoints, a 3D point is 

reconstructed. Similarly to the monocular detection approach, neighbor 3D points are 

clustered in the 3D space using Mean Shift algorithm
(42)

, and only those clusters that 

have a large enough number of 3D points are selected. iii) Final analysis: For each 

selected 3D cluster, all 3D reconstructed points belonging to the cluster are re-projected 

onto all images. The extracted descriptors of the keypoints located near these re-

projected points are classified individually using classifier h. The cluster will be 

classified as class c‟ if there is a large number of keypoints individually classified as c‟ 

and this number represents a majority in the cluster (see Figure  4d). 

This majority vote strategy can overcome the problem of false monocular detections 

when the classification of the minority fails. A cluster can be misclassified if the part 

that we are trying to recognize is occluded by a part of another class. In this case, there 

will be keypoints in the cluster assigned to both classes; however, we expect that the 

majority of keypoints will be assigned to the true class if there are a small number of 
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keypoints misclassified.  Results with some degree of overlap, where the task was the 

recognition of springs and clips, are illustrated in Figure 5. 

In order to illustrate the effectiveness of the proposed method, experimental results on 

recognizing regular objects -clips, springs and razor blades- in pen cases are shown 

achieving around 93% accuracy for 120 objects. 

The reader is referred to (Mery et al., 2013)
(43) 

for a detailed description of the active 

vision algorithm and more examples. 

 

(a)

(b)

(c)

(d) 

Figure 4. Multiple view detection of springs in a pencase: a) original test sequence, 

b) detected monocular keypoints, c) matched keypoints, and d) detection. 
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(a)  (b)  (c)  (d) 

Figure 5. Recognition  using  our  approach in cases with some degree of overlap: 

a) one spring, b) two springs, c) one clip, d) one clip. Each figure shows a part of 

one image of the whole sequence. 
 

4.  Conclusions 

 

In our paper, we would like to make a contribution to object recognition in 

baggage screening.  We have  based our methods on potent ideas such as:  

i) detection windows, as they obtain a high performance in recognition and 

detection problems in computer vision; ii) multiple views, as they can be an 

effective option for examining complex objects where uncertainty by 

analyzing  only  one  angle  of perspective can lead to misinterpretation;  

iii) efficient visual search, given the speeds involved when searching for 

objects; and iv) active vision that is able to adequate the viewpoint of the 

target object in order to obtain better X-ray images to analyze. 

We believe that it would be possible to design an automated aid in a target 

detection task using the proposed algorithms. We have shown that these 

preliminary results are promising. However, since the performance of the 

methods has been verified on a few radioscopic image sequences, an 

evaluation on a broader data base is necessary. 
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